Cytosol Mg²⁺ modulates Ca²⁺ ionophore induced secretion from rabbit neutrophils

F. Di Virgilio and B.D. Gomperts

Department of Experimental Pathology, University College London, University Street, London WCIE 6JJ,

England

Received 29 September 1983

The influence of extracellular Mg²⁺ on Ca²⁺ ionophore (A23187 and ionomycin) induced secretion and changes in the cytosol pH of rabbit neutrophils suspended in Ca²⁺-free buffer has been investigated. While extracellular Ca²⁺ is obligator for ionomycin induced secretion, we have defined conditions under which A23187 can induce secretion in Ca²⁺-free media. The different behaviour of these two Ca²⁺ ionophores is discussed on the basis of their different counter cation specificities.

Neutrophil Ca²⁺ ionophore Cytosol pH Cytosol Mg²⁺ Cytosol Ca²⁺ Secretion

1. INTRODUCTION

The finding that secretion of lysosomal enzymes from cytochalasin B treated neutrophils can be stimulated by the Ca2+ ionophores A23187 and ionomycin [1,2] is strong evidence in support of the idea that the cell surface receptors (e.g. for formylmethionyl peptides and anaphylatoxins) act by mobilising Ca²⁺. The receptor directed ligands such as fMetLeuPhe can cause elevation of cytosol Ca²⁺ and consequent secretion even in the absence of extracellular Ca²⁺, mobilising Ca²⁺ in these conditions from intracellular sources [3]. An anomalous situation thus exists for the Ca²⁺ ionophores, since measurements using the cytosol Ca2+ probe quin2 indicate that they too are able to elevate cytosol Ca2+ in the absence of extracellular Ca2+, yet under these conditions they fail to stimulate secretion [4].

We define here conditions under which A23187 (but not ionomycin) is able to stimulate secretion in the absence of extracellular Ca²⁺. The results are discussed in the light of the differing counter cation specificities of the two ionophores. It is concluded that the rise in cytosol Ca²⁺ due to the ionophores is not sufficient for stimulation unless

the cells are also depleted of Mg²⁺, suggesting that the dependence of secretion on the concentration of cytosol Ca²⁺ is subject to modulation by cytosolic Mg²⁺.

2. MATERIALS AND METHODS

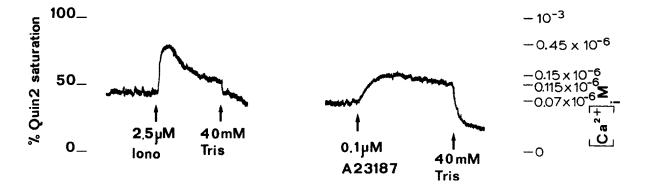
Neutrophils were obtained from rabbit peritoneal exudates as in [5,6]. The cells were washed twice by centrifugation in a Ca^{2+} -free buffered salt solution (pH 7.4) which comprised (unless otherwise indicated in the figure legends) 137 mM NaCl, 2.7 mM KCl, 1 mM MgCl₂, 20 mM Hepes, 5.6 mM glucose and 1 mg ml⁻¹ bovine serum albumin. They were finally suspended in the same solution at 10^7 cells ml⁻¹. Secretion experiments were initiated 2 min after addition of $10 \mu g$ ml⁻¹ cytochalasin B; the cells were then added to equal volumes of solution containing Ca^{2+} ionophores.

Cytosolic Ca²⁺ and pH were monitored with quin2 and bis-carboxy-ethylcarboxyfluorescein (BCECF), respectively [7,8]. Cells (10^8 ml^{-1}) were incubated at 37°C in the presence of 50 μ M quin2 in a standard albumin-free buffer containing 1 mM Ca²⁺. After 15 min the cells were diluted to $2.5 \times 10^7 \text{ ml}^{-1}$ with standard buffer containing

0.1% albumin and 40 min later they were centrifuged and resuspended in an albumin and Ca^{2+} -free buffer and kept at room temperature until the experiment was started. Fluorescence (339-492 nm) was measured in a Perkin-Elmer LS5 fluorimeter equipped with thermostat and magnetic stirring device (Rank Bros., Bottisham, UK). The calibration of quin2 fluorescence was performed by lysing the cells with Triton X-100 (0.1%) at pH 8.67 in the presence of EGTA and Tris (6.6 mM and 40 mM, respectively) in order to give the zero Ca^{2+} fluorescence (F_{min}) and then by adding back excess Ca^{2+} to give F_{max} . Cytosol Ca^{2+} [Ca^{2+}]_i was calculated according to

$$[Ca^{2+}]_i = K_d(F - F_{min})/(F_{max} - F)$$

where K_d is 115 nM and F is the fluorescence of the intracellular indicator before lysing the cells. In our experiments quin2 content was approx. 0.14 nmol/10⁶ cells.


The pH indicator (10 μ M) was loaded into the cells by a method similar to that used for the quin2. The fluorescence (490-530 nm) was calibrated by lysing the cells at known external pH. No corrections were made to the pH values thus measured to account for the slight shift in the emission peak which BCECF undergoes in the cytoplasm as compared to the extracellular environment [8,9]. Thus our values of pH could be slightly on the low side.

 β -Glucuronidase and lactate dehydrogenase were determined as in [10]. All experiments were performed at 37°C.

3. RESULTS

Fig.1 shows, in confirmation of the results of others, that the Ca^{2+} ionophores A23187 and ionomycin are both capable of elevating cytosol Ca^{2+} in neutrophils incubated in Ca^{2+} -free medium. Note that in this experiment we used ionomycin at $2.5 \,\mu\text{M}$, but we were limited to working at $0.1 \,\mu\text{M}$ with A23187 due to the intense fluorescence of this compound. The fluorescence change due to the addition of A23187 is abrupt and easily recognised as distinct from that due to change of Ca^{2+} in the cytosol and this has been subtracted from the trace in fig.1. Even at this low concentration a rise in cytosol Ca^{2+} is quite evident.

Fig.2 illustrates the dependence of β -glucuronidase secretion due to the two ionophores on added Mg²⁺ in the absence of added extracellular Ca²⁺ and in the presence of 10 μ M EGTA. On chelation of Mg²⁺ with EDTA, A23187 but not ionomycin was capable of supporting secretion. This finding prompted an investigation into the differential effects of the two ionophores, particularly in respect of cellular ionic homeostasis and cytosol pH. In view of earlier demonstrations [11] that ionomycin has the properties of a strict Ca²⁺/H⁺ exchanger

2min

Fig.1. Ionophore induced rise in cytosol Ca^{2+} in the absence of extracellular Ca^{2+} . The incubation medium contained 6.6 mM EGTA, and neither added Ca^{2+} nor albumin. Cell concentration was 5×10^6 ml⁻¹.

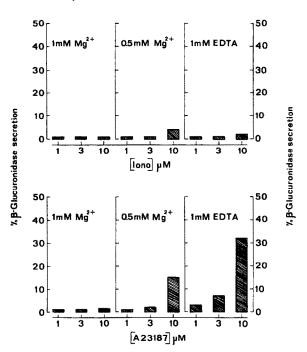


Fig. 2. Effect of extracellular Mg^{2+} on Ca^{2+} ionophore induced secretion. β -Glucuronidase secretion was measured after 15 min of incubation in the presence of the ionophores plus 10 μ M EGTA. Lactate dehydrogenase release was never more than 4% in the presence of 10 μ M ionophore.

while A23187 is also able to exchange Ca²⁺ for Mg²⁺ (among the main physiological cations) it appeared likely that the different effects of the two ionophores could be ascribed to their different specificities in respect of the counter cations in the process of electroneutral exchange diffusion.

Fig.3 illustrates the effect on cytosol pH of A23187 and ionomycin, tested under three conditions. In the presence of 2 mM EGTA (upper traces, no added Ca²⁺), ionomycin caused an initial decrease in cytosol pH which then slowly recovered to the resting level. The reason for this transient acidification is not clear. We would have anticipated a transient alkalinisation in these conditions due to exodus of Ca²⁺ from internal stores in exchange for cytosol H⁺ which would then have declined as cytosol Ca²⁺ is exchanged for H⁺ across the plasma membrane. In contrast, A23187 has little effect on cytosol pH under these conditions.

When the same experiment was carried out in

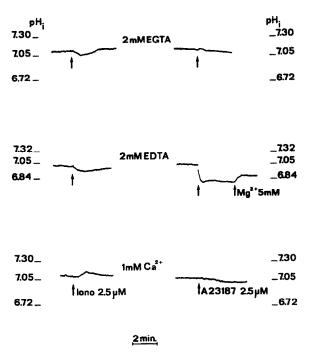


Fig. 3. Ca^{2+} ionophore induced cytosol pH changes. Cells $(5 \times 10^6 \text{ ml}^{-1})$ were incubated in the standard buffer without albumin.

the presence of 2 mM EDTA (i.e. zero Ca²⁺, zero Mg²⁺, middle traces) A23187 caused a drop in cytosol pH (to 6.7) which exceeded by far that due to ionomycin. This could be partially reversed by addition of 5 mM Mg²⁺. Thus, in conditions under which the Ca²⁺ ionophores can only act to deplete the cells of divalent cations in exchange for H⁺, the less specific A23187 has access to a far greater pool of exchangeable intracellular cations (i.e. Mg²⁺ + Ca²⁺) than has ionomycin (Ca²⁺ alone).

The lower traces show that in the presence of 1.8 mM Ca²⁺ the effect of ionomycin on cytosol pH is reversed as extracellular Ca²⁺ is now exchanged for intracellular H⁺. By contrast, A23187 is almost without effect, again suggesting that under these conditions, its preferred counter cation is Mg²⁺, no H⁺.

4. DISCUSSION

It is generally accepted that the Ca²⁺ ionophores stimulate neutrophil and other cellular responses by virtue of their Ca²⁺ carrying activity [12]. Their absolute dependence on extracellular Ca²⁺ has

been taken as the strongest evidence for the role of cytosol Ca²⁺ in cellular activation processes. Yet it has recently been shown that they are also able to elevate cytosol Ca²⁺ in neutrophils in the absence of extracellular Ca²⁺. Under these conditions no secretion occurs [4].

We offer two explanations for this anomaly:

- (i) Ca²⁺ ionophores in the absence of extracellular Ca²⁺ might perturb cytosol in homeostasis in a way which would inhibit the cellular activation process. We cannot of course exclude the possibility that the changes in cytosol pH due to ionomycin could affect secretion; indeed we note that in the presence of external Ca²⁺, the alkalinisation shows a lag phase of similar duration as that exhibited by secretion (i.e. 30 s) [2]. On the other hand the greatest degree of secretion (by A23187 in the presence of EDTA) was accompanied by the greatest degree of acidification and it is therefore unlikely that pH is a relevant modulator of cell function in these conditions.
- (ii) Normal receptor directed activation could cause other changes in addition to an elevation of cytosol Ca²⁺: the ionophore (in the presence of extracellular Ca2+) could then obviate the need for such changes by elevating cytosol Ca²⁺ above the range normally achieved in the physiological situation as previously shown [4]. Here we provide evidence that this is probably the way which the Ca²⁺ ionophores stimulate secretion. Our observation of different effects of ionomycin and A23187 on secretion and cytosol pH points to a role for cytosol Mg²⁺ as a modulator for Ca²⁺ ionophore induced Ca2+ dependent processes. This conclusion is based on the recognition, from experiments with liposomes, that while ionomycin is an obligate Ca2+/H+ exchanger A23187 can also transfer Mg²⁺ [11]. Here we show clearly that these ion exchange selectivities also pertain when the ionophores are applied to cells.

In conclusion we show that two extensively used Ca²⁺ ionophores can have very different effects on neutrophil function and ion homeostasis. With A23187 applied in the absence of extracellular Ca²⁺, secretion can occur at levels of cytosol Ca²⁺

below that normally achieved by the Ca²⁺ ionophores and we suggest that this is because the affinity of putative cytoplasmic binding sites for Ca²⁺ is enhanced by the depletion of Mg²⁺. This conclusion is in agreement with earlier results from permeabilised adrenal chromaffin cells [13] in which it was shown that Mg²⁺ reduces the apparent affinity of intracellular Ca²⁺ binding sites.

ACKNOWLEDGEMENTS

The pH indicator BCECF was the generous gift of Dr R.Y. Tsien. F. Di V. was in receipt of a short term fellowship from the European Molecular Biology Organisation.

REFERENCES

- [1] Smith, R.J. and Ignarro, L.J., (1975) Proc. Natl. Acad. Sci. USA 72, 108-112.
- [2] Cockcroft, S., Bennett, J.P. and Gomperts, B.D. (1980) Nature 288, 275-277.
- [3] Sha'afi, R.I. and Naccache, P.H. (1981) in: Advances in Inflammation Research, vol. 2 (Weissmann, G. ed.) pp. 115-148, Raven Press, New York.
- [4] Pozzan, T., Wollheim, C.B., Lew, P.D. and Tsien, R.Y. (1983) Science, in press.
- [5] Bennett, J.P., Cockcroft, S. and Gomperts, B.D. (1980) Biochim. Biophys. Acta 601, 584-591.
- [6] Di Virgilio, F. and Gomperts, B.D. (1983) Biochim. Biophys. Acta in press.
- [7] Tsien, R.Y., Rink, T.J. and Pozzan, T. (1982) Nature 295, 68-71.
- [8] Rink, T.J., Tsien, R.Y. and Pozzan, T. (1982) J. Cell Biol. 95, 189-196.
- [9] Di Virgilio, F. (1982) in Membranes in Tumour Growth, (Galeotti, T. et al., eds) pp. 527-532, Elsevier, New York.
- [10] Gomperts, B.D., Baldwin, J.M. and Micklem, K.J. (1983) Biochem. J. 210, 737-745.
- [11] Gomperts, B.D., Bennett, J.P. and Allan, D. (1981) Eur. J. Biochem. 117, 559-562.
- [12] Gomperts, B.D. (1983) in Biological Membranes, vol. 5 (Chapman, D. ed.) Academic Press, London, in press.
- [13] Knight, D.E. and Baker, P.F. (1982) J. Membrane Biol. 68, 107-140.